Pattern Decomposition Algorithm for Data Mining Frequent Patterns

نویسندگان

  • Qinghua Zou
  • Wesley Chu
  • David Johnson
  • Henry Chiu
چکیده

Efficient algorithms to mine frequent patterns are crucial to many tasks in data mining. Since the Apriori algorithm was proposed in 1994, there have been several methods proposed to improve its performance. However, most still adopt its candidate set generation-and-test approach. In addition, many methods do not generate all frequent patterns, making them inadequate to derive association rules. We propose a pattern decomposition (PD) algorithm that can significantly reduce the size of the dataset on each pass making it more efficient to mine all frequent patterns in a large dataset. The proposed algorithm avoids the costly process of candidate set generation and saves time by reducing dataset. Our empirical evaluation shows that the algorithm outperforms Apriori by one order of magnitude and is faster than FP-tree.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Pattern Decomposition Methods for Finding All Frequent Patterns in Large Datasets

Efficient algorithms to mine frequent patterns are crucial to many tasks in data mining. Since the Apriori algorithm was proposed in 1994, there have been several methods proposed to improve its performance. However, most still adopt its candidate set generation-and-test approach. In addition, many methods do not generate all frequent patterns, making them inadequate to derive association rules...

متن کامل

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

A New Algorithm for High Average-utility Itemset Mining

High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...

متن کامل

Data sanitization in association rule mining based on impact factor

Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...

متن کامل

Comparative Analysis of Various Approaches Used in Frequent Pattern Mining

Frequent pattern mining has become an important data mining task and has been a focused theme in data mining research. Frequent patterns are patterns that appear in a data set frequently. Frequent pattern mining searches for recurring relationship in a given data set. Various techniques have been proposed to improve the performance of frequent pattern mining algorithms. This paper presents revi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001